Conformal Polymeric Multilayer Coatings on Sulfur Cathodes via the Layer-by-Layer Deposition for High Capacity Retention in Li–S Batteries

Abstract
We report on the conformal coating of thickness-tunable multilayers directly onto the sulfur (S8) cathodes by the layer-by-layer (LbL) deposition for the significant improvement in the performances of Li–S batteries even without key additives (LiNO3) in the electrolyte. Poly(ethylene oxide) (PEO)/poly(acrylic acid) (PAA) multilayers on a single poly(allylamine hydrochloride) (PAH)/PAA priming bilayer, deposited on the S8 cathodes, effectively protected from the polysulfide leakage, while providing a Li+ ion diffusion channel. As a result, PAH/PAA/(PEO/PAA)3 multilayer-coated cathodes exhibited the highest capacity retention (806 mAh g–1) after 100 cycles at 0.5 C, as well as the high C-rate capability up to 2.0 C. Furthermore, the multilayer coating effectively mitigated the polysulfide shuttle effect in the absent of LiNO3 additives in the electrolyte.
Funding Information
  • National Science Foundation (CHE 1305773)
  • National Research Foundation of Korea (2010-0018290)
  • The Institute for Basic Science (IBS-R006-G1)