Fibrinogen and coronary heart disease: test of causality by ‘Mendelian randomization’

Abstract
Background Blood concentrations of fibrinogen have been associated with coronary heart disease risk in epidemiological studies, but it is uncertain whether this association is causal or reflects residual confounding by other risk factors. We investigated the relationship between the single nucleotide polymorphism at position −148 in the beta-fibrinogen gene promoter (β − 148C/T), blood fibrinogen levels, and risk of myocardial infarction (MI) in sufficiently large numbers of coronary disease cases to reliably address this question. Methods Genotyping and measurement of blood fibrinogen concentration were carried out in 4685 cases of confirmed MI and 3460 controls with no history of coronary disease. A meta-analysis of ISIS and 19 other studies of beta-fibrinogen genotypes involving a total of 12 220 coronary disease cases and 18 716 controls was conducted. Results Among the ISIS controls, mean plasma fibrinogen concentrations with the C/C, C/T and T/T genotypes were 3.34 (SE 0.015), 3.48 (0.022), and 3.60 (0.064) g/l, respectively, corresponding to an increase of 0.14 (0.024) g/l per T allele (trend P < 0.0001). In the case–control comparison, 0.14 g/l higher usual plasma fibrinogen concentration was associated with an age-adjusted and sex-adjusted risk ratio for MI of 1.17 [95% confidence interval (95% CI) 1.14–1.19; P < 0.0001]. But, after further adjustment for smoking, body mass index, and plasma apolipoprotein B/A1 ratio, this risk ratio fell to 1.03 (95% CI 1.00–1.05; P = 0.05). Moreover, fibrinogen genotype was not significantly associated with MI incidence: risk ratio of 1.06 (95% CI 0.96–1.16) per higher-fibrinogen allele in ISIS alone and of 1.00 (95% CI 0.95–1.04) per allele in the meta-analysis. Conclusions Genotypes that produce lifelong differences in fibrinogen concentrations do not materially influence coronary disease incidence. As these genotype-dependent differences in fibrinogen were allocated randomly at conception (Mendelian randomization), this association is not likely to be confounded by other factors. Consequently, these genetic results provide strong evidence that long-term differences in fibrinogen concentrations are not a major determinant of coronary disease risk.