Correlation of cathodoluminescence inhomogeneity with microstructural defects in epitaxial GaN grown by metalorganic chemical-vapor deposition

Abstract
We discuss the relationship between microstructure and luminescence efficiency for heteroepitaxial films of GaN grown on c-axis sapphire substrates by metalorganic chemical-vapor deposition. We directly characterize the correlation between threading dislocations as observed by transmission electron microscopy, surface morphology as observed by atomic force microscopy, and wavelength-resolved cathodoluminescence imaging. We show that the inhomogeneity in the luminescence intensity of these films near band edge can be accounted for by a simple model where nonradiative recombination at threading dislocations causes a deficiency of minority carriers and results in dark regions of the epilayer. An upper bound for average diffusion length is estimated to be 250 nm.