Comparative Profiling of Serum Glycoproteome by Sequential Purification of Glycoproteins and 2-Nitrobenzenesulfenyl (NBS) Stable Isotope Labeling: A New Approach for the Novel Biomarker Discovery for Cancer

Abstract
The recent progress in various proteomic technologies allows us to screen serum biomarker including carbohydrate antigens. However, only a limited number of proteins could be detected by current conventional methods such as shotgun proteomics, primarily because of the enormous concentration distribution of serum proteins and peptides. To circumvent this difficulty and isolate potential cancer-specific biomarkers for diagnosis and treatment, we established a new screening system consisting of the sequential steps of (1) immunodepletion of 6 high-abundance proteins, (2) targeted enrichment of glycoproteins by lectin column chromatography, and (3) the quantitative proteome analysis using 12C6- or 13C6-NBS (2-nitrobenzenesulfenyl) stable isotope labeling followed by MALDI-QIT-TOF mass spectrometric analysis. Through this systematic analysis for five serum samples derived from patients with lung adenocarcinoma, we identified as candidate biomarkers 34 serum glycoproteins that revealed significant difference in α1,6-fucosylation level between lung cancer and healthy control, clearly demonstrating that the carbohydrate-focused proteomics could allow for the detection of serum components with cancer-specific features. In addition, we developed a more simplified and practical technique, mass spectrometry-based glycan structure analysis and lectin blotting, in order to validate glycan structure of candidate biomarkers that could be applicable in clinical use. Our new glycoproteomic strategy will provide highly sensitive and quantitative profiling of specific glycan structures on multiple proteins, which should be useful for serum biomarker discovery. Keywords: biomarker • serum • lung cancer • glycosylation • glycoproteomics • stable isotope labeling • lectin • mass spectrometry