Molecular Trickery in Soil Organic Matter: Hidden Lignin

Abstract
Binding to minerals is one mechanism crucial toward the accumulation and stabilization of organic matter (OM) in soils. Of the various biochemicals produced by plants, lignin-derived phenols are among the most surface-reactive compounds. However, it is not known to what extent mineral-bound lignin-derived phenols can be analytically assessed by alkaline CuO oxidation. We tested the potential irreversible binding of lignin from three litters (blue oak, foothill pine, annual grasses) to five minerals (ferrihydrite, goethite, kaolinite, illite, montmorillonite) using the CuO-oxidation technique, along with bulk organic carbon (OC) sorption. Up to 56% of sorbed lignin could not be extracted from the minerals with the CuO-oxidation technique. The composition of the irreversibly bound lignin component differed markedly between minerals and from that of the parent litter leachates, indicating different bonding strengths related to individual monomers and conformations. The difference in extractability of individual phenols suggests that abiotic processes, such as sorption/desorption, should be taken into account when using CuO oxidation data for assessing lignin turnover in mineral matrixes. However, given the apparent relationship between aromaticity as indicated by carbon-specific UV absorbance (SUVA) and bulk OC sorption, it is likely that irreversible sorption is a concern for any technique that addresses the broad class of aromatic/phenolic compounds in soils and sediments.