Reduction of Turbulent Transport with Zonal Flows Enhanced in Helical Systems

Abstract
Gyrokinetic Vlasov simulations of the ion temperature gradient turbulence are performed in order to investigate effects of helical magnetic configurations on turbulent transport and zonal flows. The obtained results confirm the theoretical prediction that helical configurations optimized for reducing neoclassical ripple transport can simultaneously reduce the turbulent transport with enhancing zonal-flow generation. Stationary zonal-flow structures accompanied with transport reduction are clearly identified by the simulation for the neoclassically optimized helical geometry. The generation of the stationary zonal flow explains a physical mechanism for causing the confinement improvement observed in the inward-shifted plasma in the Large Helical Device [O. Motojima et al., Nucl. Fusion 43, 1674 (2003)].