Abstract
We have investigated the localization of Kex1p, a type I transmembrane carboxypeptidase involved in precursor processing within the yeast secretory pathway. Indirect immunofluorescence demonstrated the presence of Kex1p in a punctate organelle resembling the yeast Golgi apparatus as identified by Kex2p and Sec7p (Franzusoff, A., K. Redding, J. Crosby, R. S. Fuller, and R. Schekman. 1991. J. Cell Biol. 112:27-37). Glycosylation studies of Kex1p were consistent with a Golgi location, as Kex1p was progressively N-glycosylated in an MNN1-dependent manner. To address the basis of Kex1p targeting to the Golgi apparatus, we examined the cellular location of a series of carboxy-terminal truncations of the protein. The results indicate that a cytoplasmically exposed carboxy-terminal domain is required for retention of this membrane protein within the Golgi apparatus. Deletions of the retention region or overproduction of wild-type Kex1p led to mislocalization of Kex1p to the vacuolar membrane. This unexpected finding is discussed in terms of models involving either the vacuole as a default destination for membrane proteins, or by endocytosis to the vacuole following their default localization to the plasma membrane.