A Pathogen Type III Effector with a Novel E3 Ubiquitin Ligase Architecture

Abstract
Type III effectors are virulence factors of Gram-negative bacterial pathogens delivered directly into host cells by the type III secretion nanomachine where they manipulate host cell processes such as the innate immunity and gene expression. Here, we show that the novel type III effector XopL from the model plant pathogen Xanthomonas campestris pv. vesicatoria exhibits E3 ubiquitin ligase activity in vitro and in planta, induces plant cell death and subverts plant immunity. E3 ligase activity is associated with the C-terminal region of XopL, which specifically interacts with plant E2 ubiquitin conjugating enzymes and mediates formation of predominantly K11-linked polyubiquitin chains. The crystal structure of the XopL C-terminal domain revealed a single domain with a novel fold, termed XL-box, not present in any previously characterized E3 ligase. Mutation of amino acids in the central cavity of the XL-box disrupts E3 ligase activity and prevents XopL-induced plant cell death. The lack of cysteine residues in the XL-box suggests the absence of thioester-linked ubiquitin-E3 ligase intermediates and a non-catalytic mechanism for XopL-mediated ubiquitination. The crystal structure of the N-terminal region of XopL confirmed the presence of a leucine-rich repeat (LRR) domain, which may serve as a protein-protein interaction module for ubiquitination target recognition. While the E3 ligase activity is required to provoke plant cell death, suppression of PAMP responses solely depends on the N-terminal LRR domain. Taken together, the unique structural fold of the E3 ubiquitin ligase domain within the Xanthomonas XopL is unprecedented and highlights the variation in bacterial pathogen effectors mimicking this eukaryote-specific activity. Numerous bacterial pathogens infecting plants, animals and humans use a common strategy of host colonization, which involves injection of specific proteins termed effectors into the host cell. Identification of effector proteins and elucidation of their individual functions is essential for our understanding of the pathogenesis process. Here, we identify a novel effector, XopL, from Xanthomonas campestris pv. vesicatoria, which causes disease in tomato and pepper plants. We show that XopL suppresses PAMP-related defense gene expression and further characterize XopL as an E3 ubiquitin ligase. This eukaryote-specific function involves attachment of ubiquitin molecule(s) to a particular protein targeted for degradation or localisation to specific cell compartments. Ubiquitination processes play a central role in cell-cycle regulation, DNA repair, cell growth and immune responses. In the case of XopL this activity triggers plant cell death. Through structural and functional analysis we demonstrate that XopL contains two distinct domains, one of which demonstrates a novel fold never previously observed in E3 ubiquitin ligases. This novel domain specifically interacts with plant ubiquitination system components. Our findings provide the first insights into the function of a previously unknown XopL effector and identify a new member of the growing family of bacterial pathogenic factors hijacking the host ubiquitination system.