FULLY DEVELOPED LAMINAR CONVECTION FROM A HELICAL COIL

Abstract
A general correlating equation has been developed for all Prandtl and Dean numbers. This expression was constructed by joining the theoretical Nusselt number for a straight tube, a theoretical asymptote for the regime of creeping secondary flow, a semi-theoretical expression for the boundary layer regime and an asymptotic value of Nu for the intervening regime of flow.The arbitrary coefficients and exponents in the model were evaluated using experimental and numerically computed values. Slightly differing sets of coefficients are required for uniform wall temperature and longitudinally uniform heating with uniform peripheral wall temperature. All prior theoretical results were for toroidal flow (zero pitch). A numerical solution was developed for helical flow (finite pitch). These results confirm the validity of neglecting pitch for tightly wound coils but suggest a generalization of the correlating equation for large pitch.