Electrically charged compact stars and formation of charged black holes

Abstract
We study the effect of electric charge in compact stars assuming that the charge distribution is proportional to the mass density. The pressure and the density of the matter inside the stars are large, and the gravitational field is intense. This indicates that electric charge and a strong electric field can also be present. The relativistic hydrostatic equilibrium equation, i.e., the Tolman-Oppenheimer-Volkoff equation, is modified in order to include electric charge. We perform a detailed numerical study of the effect of electric charge using a polytropic equation of state. We conclude that in order to see any appreciable effect on the phenomenology of the compact stars, the electric fields have to be huge (∼1021 V/m), which implies that the total charge is Q∼1020 Coulomb. From the local effect of the forces experienced on a single charged particle, it is expected that each individual charged particle is quickly ejected from the star. This in turn produces a huge force imbalance, and the gravitational force overwhelms the repulsive Coulomb and fluid pressure forces. The star can then collapse to form a charged black hole before all the charge leaves the system.