Global Survey of the Relationships of Cloud Albedo and Liquid Water Path with Droplet Size Using ISCCP

Abstract
The most common approach used to model the aerosol indirect effect on clouds holds the cloud liquid water path constant. In this case, increasing aerosol concentration increases cloud droplet concentration, decreases cloud droplet size, and increases cloud albedo. The expected decrease in cloud droplet size associated with larger aerosol concentrations has been found to be larger over land than over water and larger in the Northern than in the Southern Hemisphere, but the corresponding cloud albedo increase has not been found. Many previous studies have shown that cloud liquid water path varies with changing cloud droplet size, which may alter the behavior of clouds when aerosols change. This study examines the relationship between geographic and seasonal variations of cloud effective droplet size and cloud albedo, as well as cloud liquid water path, in low-level clouds using International Satellite Cloud Climatology Project data. The results show that cloud albedo increases with decreasing droplet size for most clouds over continental areas and for all optically thicker clouds, but that cloud albedo decreases with decreasing droplet size for optically thinner clouds over most oceans and the tropical rain forest regions. For almost all clouds, the liquid water path increases with increasing cloud droplet size.