Abstract
The problem of the motions of a chain molecule diffusing in a viscous fluid under the influence of external forces or currents is considered for a particular model. This model is a chain of beads connected by ideal springs. Hydrodynamic interaction between the beads is introduced in the approximate form due to Kirkwood and Riseman. It is possible to solve this problem exactly with the use of a transformation to a set of normal coordinates. The viscosity, birefringence of flow, and dielectric and tensile relaxation behavior are calculated explicitly. The intrinsic viscosity in steady flow is somewhat different from the Kirkwood‐Riseman result, and there is no change of viscosity with shear rate. The spectrum of relaxation times is similar to that found by Rouse and by F. Bueche, but has its maximum at a lower frequency than those obtained by Kuhn and Kuhn and by Kirkwood and Fuoss in other ways.