Effects of Decreased Respiratory Frequency on Ventilator-induced Lung Injury

Abstract
To determine if decreased respiratory frequency (ventilatory rate) improves indices of lung damage, 17 sets of isolated, perfused rabbit lungs were ventilated with a peak static airway pressure of 30 cm H 2 O. All lungs were randomized to one of three frequency/peak pulmonary artery pressure combina- tions: F20P35 (n 5 6): ventilatory frequency, 20 breaths/min, and peak pulmonary artery pressure, 35 mm Hg; F3P35 (n 5 6), ventilatory frequency, 3 breaths/min, and peak pulmonary artery pressure of 35 mm Hg; or F20P20 (n 5 5), ventilatory frequency, 20 breaths/min, and peak pulmonary artery pressure, 20 mm Hg. Mean airway pressure and tidal volume were matched between groups. Mean pulmonary artery pressure and vascular flow were matched between groups F20P35 and F3P35. The F20P35 group showed at least a 4.5-fold greater mean weight gain and a 3-fold greater mean inci- dence of perivascular hemorrhage than did the comparison groups, all p < 0.05. F20P35 lungs also displayed more alveolar hemorrhage than did F20P20 lungs (p < 0.05). We conclude that decreasing respiratory frequency can improve these indices of lung damage, and that limitation of peak pulmo- nary artery pressure and flow may diminish lung damage for a given ventilatory pattern. Hotchkiss JR, Jr., Blanch L, Murias G, Adams AB, Olson DA, Wangensteen OD, Leo PH, Marini JJ. Effects of decreased respiratory frequency on ventilator-induced lung injury. AM J RESPIR CRIT CARE MED 2000;161:463-468.