Tracer arrival timing‐insensitive technique for estimating flow in MR perfusion‐weighted imaging using singular value decomposition with a block‐circulant deconvolution matrix

Top Cited Papers
Open Access
Abstract
Relative cerebral blood flow (CBF) and tissue mean transit time (MTT) estimates from bolus‐tracking MR perfusion‐weighted imaging (PWI) have been shown to be sensitive to delay and dispersion when using singular value decomposition (SVD) with a single measured arterial input function. This study proposes a technique that is made time‐shift insensitive by the use of a block‐circulant matrix for deconvolution with (oSVD) and without (cSVD) minimization of oscillation of the derived residue function. The performances of these methods are compared with standard SVD (sSVD) in both numerical simulations and in clinically acquired data. An additional index of disturbed hemodynamics (oDelay) is proposed that represents the tracer arrival time difference between the AIF and tissue signal. Results show that PWI estimates from sSVD are weighted by tracer arrival time differences, while those from oSVD and cSVD are not. oSVD also provides estimates that are less sensitive to blood volume compared to cSVD. Using PWI data that can be routinely collected clinically, oSVD shows promise in providing tracer arrival timing‐insensitive flow estimates and hence a more specific indicator of ischemic injury. Shift maps can continue to provide a sensitive reflection of disturbed hemodynamics. Magn Reson Med 50:164–174, 2003.
Funding Information
  • NIH (5 R01 NS38477, 5 R01 HL39810, 5P41 RR14075)
  • Danish Medical Research Council
  • Danish National Research Foundation

This publication has 21 references indexed in Scilit: