Spin Rabi flopping in the photocurrent of a polymer light-emitting diode

Abstract
Electron spin is fundamental in electrical and optical properties of organic electronic devices. Despite recent interest in spin mixing and spin transport in organic semiconductors, the actual spin coherence times in these materials have remained elusive. Measurements of spin coherence provide impartial insight into spin relaxation mechanisms, which is significant in view of recent models of spin-dependent transport and recombination involving high levels of spin mixing. We demonstrate coherent manipulation of spins in an organic light-emitting diode (OLED), using nanosecond pulsed electrically detected electron spin resonance to drive singlet-triplet spin Rabi oscillations. By measuring the change in photovoltaic response due to spin-dependent recombination, we demonstrate spin control of electronic transport and thus directly observe spin coherence over 0.5 s. This surprisingly slow spin dephasing underlines that spin mixing is not responsible for magnetoresistance in OLEDs. The long coherence times and the spin manipulation demonstrated are crucially important for expanding the impact of organic spintronics.