Abstract
This paper presents a systematic review of long period fiber gratings (LPFGs) written by the CO2 laser irradiation technique. First, various fabrication techniques based on CO2 laser irradiations are demonstrated to write LPFGs in different types of optical fibers such as conventional glass fibers, solid-core photonic crystal fibers, and air-core photonic bandgap fibers. Second, possible mechanisms, e.g., residual stress relaxation, glass structure changes, and physical deformation, of refractive index modulations in the CO2 -laser-induced LPFGs are analyzed. Third, asymmetrical mode coupling, resulting from single-side laser irradiation, is discussed to understand unique optical properties of the CO2 -laser-induced LPFGs. Fourthly, several pretreament and post-treatment techniques are proposed to enhance the efficiency of grating fabrications. Fifthly, sensing applications of the CO2 -laser-induced LPFGs are investigated to develop various LPFG-based temperature, strain, bend, torsion, pressure, and biochemical sensors. Finally, communication applications of the CO2 -laser-induced LPFGs are investigated to develop various LPFG-based band-rejection filters, gain equalizers, polarizers, and couplers.