Characterization of cell wall properties in needles from Scotch pine trees of various vigor

Abstract
Ion-exchange properties of needle cell walls were studied on healthy and severely weakened Scotch pine (Pinus sylvestris L.) trees subjected to industrial pollutions with sulfur and heavy metals. Three types of cation-exchange groups were identified: carboxylic groups of polygalacturonic acid, carboxylic groups unrelated to polygalacturonic acid, and phenolic OH-groups. The needles of impaired trees (vigor state IV) differed from needles of healthy plants (vigor state I) by a higher coefficient of cell wall swelling, higher nitrogen content, and lower content of ion-exchanging groups in the cell wall structure. It is supposed that differences in ion-exchange capacity of cell walls could be among the causes for distribution of pine trees into several groups according to their vigor.