Registering multiview range data to create 3D computer objects

Abstract
Concerns the problem of range image registration for the purpose of building surface models of 3D objects. The registration task involves finding the translation and rotation parameters which properly align overlapping views of the object so as to reconstruct from these partial surfaces, an integrated surface representation of the object. The registration task is expressed as an optimization problem. We define a function which measures the quality of the alignment between the partial surfaces contained in two range images as produced by a set of motion parameters. This function computes a sum of Euclidean distances from control points on one surfaces to corresponding points on the other. The strength of this approach is in the method used to determine point correspondences. It reverses the rangefinder calibration process, resulting in equations which can be used to directly compute the location of a point in a range image corresponding to an arbitrary point in 3D space. A stochastic optimization technique, very fast simulated reannealing (VFSR), is used to minimize the cost function. Dual-view registration experiments yielded excellent results in very reasonable time. A multiview registration experiment took a long time. A complete surface model was then constructed from the integration of multiple partial views. The effectiveness with which registration of range images can be accomplished makes this method attractive for many practical applications where surface models of 3D objects must be constructed.

This publication has 11 references indexed in Scilit: