Distributed Event-Triggered Control for Multi-Agent Systems

Abstract
Event-driven strategies for multi-agent systems are motivated by the future use of embedded microprocessors with limited resources that will gather information and actuate the individual agent controller updates. The controller updates considered here are event-driven, depending on the ratio of a certain measurement error with respect to the norm of a function of the state, and are applied to a first order agreement problem. A centralized formulation is considered first and then its distributed counterpart, in which agents require knowledge only of their neighbors' states for the controller implementation. The results are then extended to a self-triggered setup, where each agent computes its next update time at the previous one, without having to keep track of the state error that triggers the actuation between two consecutive update instants. The results are illustrated through simulation examples.

This publication has 25 references indexed in Scilit: