Characterization of W1745C and S1783A: 2 novel mutations causing defective collagen binding in the A3 domain of von Willebrand factor

Abstract
Investigation of 3 families with bleeding symptoms demonstrated a defect in the collagen-binding activity of von Willebrand factor (VWF) in association with a normal VWF multimeric pattern. Genetic analysis showed affected persons to be heterozygous for mutations in the A3 domain of VWF: S1731T, W1745C, and S1783A. One person showed compound heterozygosity for W1745C and R760H. W1745C and S1783A have not been reported previously. The mutations were reproduced by site-directed mutagenesis and mutant VWF expressed in HEK293T cells. Collagen-binding activity measured by immunosorbent assay varied according to collagen type: W1745C and S1783A were associated with a pronounced binding defect to both type I and type III collagen, whereas the principal abnormality in S1731T patients was a reduction in binding to type I collagen only. The multimer pattern and distribution of mutant proteins were indistinguishable from wild-type recombinant VWF, confirming that the defect in collagen binding resulted from the loss of affinity at the binding site and not impairment of high-molecular-weight multimer formation. Our findings demonstrate that mutations causing an abnormality in the binding of VWF to collagen may contribute to clinically significant bleeding symptoms. We propose that isolated collagen-binding defects are classified as a distinct subtype of von Willebrand disease.

This publication has 25 references indexed in Scilit: