Nonlinear transport coefficients and plane Couette flow of a viscous, heat-conducting gas between two plates at different temperatures

Abstract
By using the example of plane Couette flow between two plates maintained at different temperatures, we present a method of calculating flow profiles for rarefied gases. In the method, generalized hydrodynamic equations are derived from the Boltzmann equation. They are then solved with boundary conditions calculated by taking into consideration the interfacial interaction between the surface and the gas molecule. The nonlinear transport coefficients employed in the generalized hydrodynamic equations are obtained from the Boltzmann equation by means of the modified-moment method. The profiles calculated are in agreement with the Liu–Lees theory as long as the boundary values are in agreement. It is found that the viscous-heating effect has a significant influence on the temperature and velocity profiles. The nonlinearity of transport coefficients also has significant effects on the profiles as the Knudsen and Mach numbers increase.