Abstract
GABAergic inhibition in the brain can be classified as either phasic or tonic. γ-Aminobutyric acid (GABA) uptake by GABA transporters (GATs) can limit the time course of phasic currents arising from endogenous and exogenous GABA, as well as decrease a tonically active GABA current. GABA transporter subtypes 1 and 3 (GAT-1 and GAT-3) are the most heavily expressed of the four known GAT subtypes. The role of GATs in shaping GABA currents in the neocortex has not been explored. We obtained patch-clamp recordings from layer II/III pyramidal cells and layer I interneurons in rat sensorimotor cortex. We found that selective GAT-1 inhibition with NO711 decreased the amplitude and increased the decay time of evoked inhibitory postsynaptic currents (IPSCs) but had no effect on the tonic current or spontaneous IPSCs (sIPSCs). GAT-2/3 inhibition with SNAP-5114 had no effect on IPSCs or the tonic current. Coapplication of NO711 and SNAP-5114 substantially increased tonic currents and synergistically decreased IPSC amplitudes and increased IPSC decay times. sIPSCs were not resolvable with coapplication of NO711 and SNAP-5114. The effects of the nonselective GAT antagonist nipecotic acid were similar to those of NO711 and SNAP-5114 together. We conclude that synaptic GABA levels in neocortical neurons are controlled primarily by GAT-1, but that GAT-1 and GAT-2/3 work together extrasynaptically to limit tonic currents. Inhibition of any one GAT subtype does not increase the tonic current, presumably as a result of increased activity of the remaining transporters. Thus neocortical GAT-1 and GAT-2/3 have distinct but overlapping roles in modulating GABA conductances.