The sensitive detection of NO by Faraday modulation spectroscopy with a quantum cascade laser

Abstract
A spectrometer based on a quantum cascade laser and capable of operating at particular wavelengths in the mid-infrared with very high sensitivity for the detection of open-shell molecules has been developed. It exploits magnetic field modulation in the Faraday rotation configuration. The signals for nitric oxide (NO) that may be observed with this instrument have been studied and their dependence on the J and Ω quantum numbers investigated with a simulation program. It is shown that the Q(3/2) transition of NO in the 2Π3/2 component at 1875.8 cm−1 would provide the greatest sensitivity for detection. The experimental observation of the R(21/2) transition of the Ω = 1/2 component gives a detection limit of 41 ppb of NO in air at a pressure of 25 mbar. Detection of NO through the Q(3/2) transition would provide a detection limit of 4 ppb at this pressure.