Structure/Processing/Properties Relationships in Nanoporous Nanoparticles As Applied to Catalysis of the Cathodic Oxygen Reduction Reaction

Abstract
We present a comprehensive experimental study of the formation and activity of dealloyed nanoporous Ni/Pt alloy nanoparticles for the cathodic oxygen reduction reaction. By addressing the kinetics of nucleation during solvothermal synthesis we developed a method to control the size and composition of Ni/Pt alloy nanoparticles over a broad range while maintaining an adequate size distribution. Electrochemical dealloying of these size-controlled nanoparticles was used to explore conditions in which hierarchical nanoporosity within nanoparticles can evolve. Our results show that in order to evolve fully formed porosity, particles must have a minimum diameter of ∼15 nm, a result consistent with the surface kinetic processes occurring during dealloying. Nanoporous nanoparticles possess ligaments and voids with diameters of approximately 2 nm, high surface area/mass ratios usually associated with much smaller particles, and a composition consistent with a Pt-skeleton covering a Ni/Pt alloy core. Electrochemical measurements show that the mass activity for the oxygen reduction reaction using carbon-supported nanoporous Ni/Pt nanoparticles is nearly four times that of commercial Pt/C catalyst and even exceeds that of comparable nonporous Pt-skeleton Ni/Pt alloy nanoparticles.