Ionic polymer metal composites: II. Manufacturing techniques

Abstract
This paper, the second in a series of four review papers to appear in this journal, presents a detailed description of various techniques and experimental procedures in manufacturing ionic polymer–metal composites (IPMCs) that, if fully developed, can be used as effective biomimetic sensors, actuators and artificial muscles as well as fully electroded with embedded electrodes for fuel cells. The performance of IPMCs manufactured by different manufacturing techniques are presented and compared. In particular, a number of issues such as force optimization using the Taguchi design of experiment technique, effects of different cations on electromechanical performance of IPMCs, electrode and particle size and distribution control, manufacturing cost minimization approaches, scaling and three-dimensional (3D) muscle production issues and heterogeneous composites by physical loading techniques are also reviewed and discussed.