The pattern of expression of the voltage-gated sodium channels Nav1.8 and Nav1.9 does not change in uninjured primary sensory neurons in experimental neuropathic pain models

Abstract
Ected area. While alterations in voltage-gated sodium channels (VGSCs) have been shown to contribute to the generation of ectopic activity in the injured neurons, little is known about changes in VGSCs in the neighboring intact dorsal root ganglion (DRG) neurons, even though these cells begin to fire spontaneously. We have now investigated changes in the expression of the TTX-resistant VGSCs, Nav1.8 (SNS/PN3) and Nav1.9 (SNS2/NaN) by immunohistochemistry in rat models of neuropathic pain both with an intermingling of intact and degenerated axons in the nerve stump (SNL and CCI) and with a co-mingling in the same DRG of neurons with injured and uninjured axons (sciatic axotomy and SNI). The expression of Nav1.8 and Nav1.9 protein was abolished in all injured DRG neurons, in all models. In intact DRGs and in neighboring non-injured neurons, the expression and the distribution among the A- and C-fiber neuronal populations of Nav1.8 and Nav1.9 was, however, unchanged. While it is unlikely, therefore, that a change in the expression of TTX-resistant VGSCs in non-injured neurons contributes to neuropathic pain, it is essential that molecular alterations in both injured and non-injured neurons in neuropathic pain models are investigated....