Abstract
The results of an experimental investigation are presented in which dichloromethane (methylene chloride) boiling on a glass surface was studied using laser interferometry and high-speed photography. New data for active site density, frequency of bubble emission, and bubble departure radius were obtained in conjunction with measurements of the volume of microlayer evaporated from the film underlying the base of each bubble for various combinations of heat flux and subcooling. These results were used to support a model for predicting boiling heat flux incorporating microlayer evaporation, natural convection, and nucleate boiling mechanisms. Microlayer evaporation heat transfer is shown to represent a significant proportion of the total heat transfer for the range of heat flux and sub-cooling investigated.