Deaminase-Independent Inhibition of Parvoviruses by the APOBEC3A Cytidine Deaminase

Abstract
The APOBEC3 proteins form a multigene family of cytidine deaminases with inhibitory activity against viruses and retrotransposons. In contrast to APOBEC3G (A3G), APOBEC3A (A3A) has no effect on lentiviruses but dramatically inhibits replication of the parvovirus adeno-associated virus (AAV). To study the contribution of deaminase activity to the antiviral activity of A3A, we performed a comprehensive mutational analysis of A3A. By mutation of non-conserved residues, we found that regions outside of the catalytic active site contribute to both deaminase and antiviral activities. Using A3A point mutants and A3A/A3G chimeras, we show that deaminase activity is not required for inhibition of recombinant AAV production. We also found that deaminase-deficient A3A mutants block replication of both wild-type AAV and the autonomous parvovirus minute virus of mice (MVM). In addition, we identify specific residues of A3A that confer activity against AAV when substituted into A3G. In summary, our results demonstrate that deaminase activity is not necessary for the antiviral activity of A3A against parvoviruses. The APOBEC3 proteins constitute a family of seven cytidine deaminases. Cytidine deaminases are editing enzymes able to remove the amine group from cytidine in single-strand DNA (ssDNA) and RNA, converting it to uracil. APOBEC3 proteins have potent antiviral activity against retroviruses, retrotransposons, and DNA viruses. APOBEC3 generated high interest because of the ability of APOBEC3G (A3G) to inhibit HIV. APOBEC3A (A3A) is a member of the family that inhibits the human parvovirus adeno-associated virus (AAV) and the retrotransposon LINE-1. Parvoviruses are simple ssDNA viruses that do not require a retrotranscription step for their replication. In contrast to A3G, which is predominantly cytoplasmic, A3A is located in both the nucleus and cytoplasm. In addition, A3A consists of a single cytidine deaminase catalytic domain, whereas A3G has two. The dependence of the antiviral function on deaminase activity is controversial. In this study, we identify numerous A3A residues required for deaminase and antiviral activities. We show that A3A not only inhibits AAV but also the minute virus of mice (MVM). Importantly, we demonstrate that A3A does not require its deaminase activity to block the replication of both parvoviruses. Thus, exploiting the simplicity of parvoviruses together with the single-domain cytidine deaminase A3A, we are able to demonstrate that cytidine deaminase activity is not required for APOBEC3 mediated viral inhibition.