Collinearity between a 30-centimorgan segment ofArabidopsis thalianachromosome 4 and duplicated regions within theBrassica napusgenome

Abstract
Arabidopsis thaliana (the model dicotyledonous plant) is closely related to Brassica crop species. Genome collinearity, or conservation of marker order, between Brassica napus (oilseed rape) and A. thaliana was assessed over a 7.5-Mbp region of the long arm of A. thaliana chromosome 4, equivalent to 30 cM. Estimates of copy number indicated that sequences present in a single copy in the haploid genome of A. thaliana (n = 5) were present in 2-8 copies in the haploid genome of B. napus (n = 19), while sequences present in multiple copies in A. thaliana were present in over 10 copies in B. napus. Genetic mapping in B. napus of DNA markers derived from a segment of A. thaliana chromosome 4 revealed duplicated homologous segments in the B. napus genome. Physical mapping in A. thaliana of homologues of Brassica clones derived from these regions confirmed the identity of six duplicated segments with substantial homology to the 7.5-Mbp region of chromosome 4 in A. thaliana. These six duplicated Brassica regions (on average 22cM in length) are collinear, except that two of the six copies contain the same large internal inversion. These results have encouraging implications for the feasibility of shuttling between the physical map of A. thaliana and genetic maps of Brassica species, for identifying candidate genes and for map based gene cloning in Brassica crops.