X-RAY REFLECTED SPECTRA FROM ACCRETION DISK MODELS. II. DIAGNOSTIC TOOLS FOR X-RAY OBSERVATIONS

Abstract
We present a comprehensive study of the emission spectra from accreting sources. We use our new reflection code to compute the reflected spectra from an accretion disk illuminated by X-rays. This set of models covers different values of ionization parameter, solar iron abundance, and photon index for the illuminating spectrum. These models also include the most complete and recent atomic data for the inner shell of the iron and oxygen isonuclear sequences. We concentrate our analysis on the 2-10 keV energy region and in particular on the iron K-shell emission lines. We show the dependency of the equivalent width (EW) of the Fe Kα on the ionization parameter. The maximum value of the EW is ~800 eV for models with log ξ ~ 1.5 and decreases monotonically as ξ increases. For lower values of ξ, the Fe Kα EW decreases to a minimum near log ξ ~ 0.8. We produce simulated CCD observations based on our reflection models. For low-ionized, reflection-dominated cases, the 2-10 keV energy region shows a very broad, curving continuum that cannot be represented by a simple power law. We show that in addition to the Fe K-shell emission, there are other prominent features such as the Si and S Lα lines, a blend of Ar VIII-XI lines, and the Ca X Kα line. In some cases, the S XV blends with the He-like Si radiative recombination continua producing a broad feature that cannot be reproduced by a simple Gaussian profile. This could be used as a signature of reflection.

This publication has 32 references indexed in Scilit: