Decline in intestinal mucosal IL-10 expression and decreased intestinal barrier function in a mouse model of total parenteral nutrition

Abstract
Loss of intestinal epithelial barrier function (EBF) is a major problem associated with total parenteral nutrition (TPN) administration. We have previously identified intestinal intraepithelial lymphocyte (IEL)-derived interferon-γ (IFN-γ) as a contributing factor to this barrier loss. The objective was to determine whether other IEL-derived cytokines may also contribute to intestinal epithelial barrier breakdown. C57BL6J male mice received TPN or enteral nutrition (control) for 7 days. IEL-derived interleukin-10 (IL-10) was then measured. A significant decline in IEL-derived IL-10 expression was seen with TPN administration, a cytokine that has been shown in vitro to maintain tight junction integrity. We hypothesized that this change in IEL-derived IL-10 expression could contribute to TPN-associated barrier loss. An additional group of mice was given exogenous recombinant IL-10. Ussing chamber experiments showed that EBF markedly declined in the TPN group. TPN resulted in a significant decrease of IEL-derived IL-10 expression. The expression of several tight junction molecules also decreased with TPN administration. Exogenous IL-10 administration in TPN mice significantly attenuated the TPN-associated decline in zonula occludens (ZO)-1, E-cadherin, and occludin expression, as well as a loss of intestinal barrier function. TPN administration led to a marked decline in IEL-derived IL-10 expression. This decline was coincident with a loss of intestinal EBF. As the decline was partially attenuated with the administration of exogenous IL-10, our findings suggest that loss of IL-10 may be a contributing mechanism to TPN-associated epithelial barrier loss.