Abstract
Despite intensive long-term control programmes, schistosomiasis japonica remains a serious public health problem in China and the Philippines. The termination of mass praziquantel-treatment has seen a dramatic recent rebound in both its prevalence and associated morbidity. Schistosomiasis japonica is a zoonosis but, despite complicating control efforts, this feature provides a practical method for attacking Schistosoma japonicum through development and deployment of a transmission blocking veterinary vaccine. A recently completed bovine drug intervention trial and mathematical modelling of the transmission of S. japonicum underpin the concept that such a vaccine, targeting water buffalo, would have major implications for future integrated schistosomiasis control in China. A major block to success is the low ceiling efficacy achieved with current vaccine molecules. To solve this challenge, an antigen discovery pipeline needs to be established for identification of new vaccine targets that induce greater potency than the current anti-S. japonicum candidate vaccines. Excretory-secretory products and molecules exposed on epithelial surfaces (including receptors) which interact directly with the host immune system warrant especial attention. Extensive schistosome genomics programmes currently underway coupled with new advances in proteomics and microarray technology provide an unparalleled opportunity to identify new molecules exploitable as vaccine targets. These will then need to be produced in quantity and rigorously tested first in the laboratory and then the field. If a transmission blocking veterinary vaccine developed for bovines can be put into practice in combination with other control strategies such as human chemotherapy, elimination of S. japonicum from China may be achievable.