Studies on Photocatalytic CO2 Reduction over NH2‐Uio‐66(Zr) and Its Derivatives: Towards a Better Understanding of Photocatalysis on Metal–Organic Frameworks

Abstract
Metal–organic framework (MOF) NH2‐Uio‐66(Zr) exhibits photocatalytic activity for CO2 reduction in the presence of triethanolamine as sacrificial agent under visible‐light irradiation. Photoinduced electron transfer from the excited 2‐aminoterephthalate (ATA) to Zr oxo clusters in NH2‐Uio‐66(Zr) was for the first time revealed by photoluminescence studies. Generation of ZrIII and its involvement in photocatalytic CO2 reduction was confirmed by ESR analysis. Moreover, NH2‐Uio‐66(Zr) with mixed ATA and 2,5‐diaminoterephthalate (DTA) ligands was prepared and shown to exhibit higher performance for photocatalytic CO2 reduction due to its enhanced light adsorption and increased adsorption of CO2. This study provides a better understanding of photocatalytic CO2 reduction over MOF‐based photocatalysts and also demonstrates the great potential of using MOFs as highly stable, molecularly tunable, and recyclable photocatalysts in CO2 reduction.

This publication has 65 references indexed in Scilit: