Thrombin inhibits Bim (Bcl-2-interacting mediator of cell death) expression and prevents serum-withdrawal-induced apoptosis via protease-activated receptor 1

Abstract
To investigate the role of thrombin in regulating apoptosis, we have used CCl39 cells, a fibroblast cell line in which thrombin-induced cell proliferation has been extensively studied. Withdrawal of serum from CCl39 cells resulted in a rapid apoptotic response that was completely prevented by the inclusion of thrombin. The protective effect of thrombin was reversed by pertussis toxin, suggesting that cell-survival signalling pathways are activated via a Gi or Go heterotrimeric GTPase. Serum-withdrawal-induced death required de novo gene expression and was preceded by the rapid de novo expression of the pro-apoptotic ‘BH3-only’ protein Bim (Bcl-2-interacting mediator of cell death). Thrombin strongly inhibited the up-regulation of both Bim protein and Bim mRNA. The ability of thrombin to repress Bim expression, and to protect cells from apoptosis, was reversed by U0126, a MEK1/2 [MAPK (mitogen-activated protein kinase) or ERK (extracellular-signal-regulated kinase) 1/2] inhibitor, or LY294002, a phosphoinositide 3′-kinase (PI3K) inhibitor, suggesting that both the Raf→MEK→ERK1/2 and PI3K pathways co-operate to repress Bim and promote cell survival. A PAR1p (protease-activated receptor 1 agonist peptide) was also able to protect cells from serum-withdrawal-induced apoptosis, suggesting that thrombin acts via PAR1 to prevent apoptosis.
Keywords

This publication has 44 references indexed in Scilit: