Analysis of the SERS Spectrum by Theoretical Methodology: Evaluating a Classical Dipole Model and the Detuning of the Excitation Frequency

Abstract
Surface-enhanced Raman scattering (SERS) spectroscopy is gaining prominence as one of the most powerful ultradetection techniques. The SERS outcome is essentially a complicated pattern of vibrational bands that allows multiplex analysis but, at the same time, makes difficult the interpretation of unknown analytes or known substances in the presence of complex unknown chemical environments. Herein, we show two computational methods to reproduce the spectral shape of the SERS spectra. The first, based in the modification of the classical dipole model, reproduces with a notable similarity the experimental spectrum excited far to the red of the localized surface plasmon resonance (LSPR). This light and time-efficient model is of great interest to elucidate the orientation of the target on the plasmonic surface or even to accurately identify suspected unknown targets in real samples. However, the experimental SERS spectrum in resonance with the LSPR is also modeled by using a more classical CPHF approach. This method provides also good agreement with the experiment but at the expense of much more computational time.