Abstract
The notion of generalization can be defined precisely as the prediction risk, the expected performance of an estimator on new observations. The authors propose the prediction risk as a measure of the generalization ability of multi-layer perceptron networks and use it to select the optimal network architecture. The prediction risk must be estimated from the available data. The authors approximate the prediction risk by v-fold cross-validation and asymptotic estimates of generalized cross-validation or H. Akaike's (1970) final prediction error. They apply the technique to the problem of predicting corporate bond ratings. This problem is very attractive as a case study, since it is characterized by the limited availability of the data and by the lack of complete a priori information that could be used to impose a structure to the network architecture.<>

This publication has 5 references indexed in Scilit: