Abstract
The problem of delay-dependent stability in the mean square sense for stochastic systems with time-varying delays, Markovian switching and nonlinearities is investigated. Both the slowly time-varying delays and fast time-varying delays are considered. Based on a linear matrix inequality approach, delay-dependent stability criteria are derived by introducing some relaxation matrices which can be chosen properly to lead to a less conservative result. Numerical examples are given to illustrate the effectiveness of the method and significant improvement of the estimate of stability limit over some existing results in the literature.