Analysis of two intramolecular proton transfer processes in terms of the reaction force

Abstract
The negative derivative of the potential energy along an intrinsic reaction coordinate defines a force that has qualitatively a universal form for any process having an energy barrier: it passes through a negative minimum before the transition state, at which it is zero, followed by a positive maximum. We have analyzed two intramolecular proton transfer reactions in terms of several computed properties: internal charge separation, the electrostatic potentials of the atoms involved, their Fukui functions, and the local ionization energies. The variation of each of these properties along the intrinsic reaction coordinate shows a marked correlation with the characteristic features of the reaction force. We present a description of the proton transfer processes in terms of this force.