Abstract
The gravitational interaction between a point mass and a finite, hollow, thick-walled cylinder is calculated, the axial force is derived, and the parametric form of the coupling coefficients k2p is presented. This theory is applied to the test-masses for the Satellite Test of the Equivalence Principle (STEP) experiment, and an equation is derived for the differential gravitational coupling to these masses which is more than 105 times faster to compute than a Monte-Carlo integration of similar accuracy.

This publication has 1 reference indexed in Scilit: