Reactive Transport in Porous Media: A Comparison of Model Prediction with Laboratory Visualization

Abstract
Groundwater transport models that accurately describe spreading of nonreactive solutes in an aquifer can poorly predict concentrations of reactive solutes. The dispersive term in the advection−dispersion equation can overpredict pore-scale mixing, and thereby overpredict homogeneous chemical reaction. We quantified this experimentally by imaging instantaneous colorimetric reactions between solutions of aqueous CuSO4 and EDTA4- within a 30-cm long translucent chamber packed with cryolite sand that closely matched the optical index of refraction of water. A charge-coupled device camera was used to quantify concentrations of blue CuEDTA2- within the chamber as it was produced by mixing of the two reactants at different flow rates. We compared these experimental results with a new analytic solution for instantaneous bimolecular reaction coupled with advection and dispersion of the product and reactants. For all flow rates, the concentrations of CuEDTA2- recorded in the experiments were about 20% less than predicted by the analytic solution, thereby demonstrating that models assuming complete mixing at the pore scale can overpredict reaction during transport.