Synthesis of 18O-labeled RNA for application to kinetic studies and imaging

Abstract
Radioisotopes and fluorescent compounds are frequently used for RNA labeling but are unsuitable for clinical studies of RNA drugs because of the risk from radiation exposure or the nonequivalence arising from covalently attached fluorophores. Here, we report a practical phosphoramidite solid-phase synthesis of 18O-labeled RNA that avoids these disadvantages, and we demonstrate its application to quantification and imaging. The synthesis involves the introduction of a nonbridging 18O atom into the phosphate group during the oxidation step of the synthetic cycle by using 18O water as the oxygen donor. The 18O label in the RNA was stable at pH 3–8.5, while the physicochemical and biological properties of labeled and unlabeled short interfering RNA were indistinguishable by circular dichroism, melting temperature and RNA-interference activity. The 18O/16O ratio as measured by isotope ratio mass spectrometry increased linearly with the concentration of 18O-labeled RNA, and this technique was used to determine the blood concentration of 18O-labeled RNA after administration to mice. 18O-labeled RNA transfected into human A549 cells was visualized by isotope microscopy. The RNA was observed in foci in the cytoplasm around the nucleus, presumably corresponding to endosomes. These methodologies may be useful for kinetic and cellular-localization studies of RNA in basic and pharmaceutical studies.