Abstract
In most of researches in resource allocation for wireless networks, uplink and downlink problems are considered separately, especially when resources for uplink and downlink are statically partitioned, as in FDD and static TDD systems. However, even in those systems, joint resource allocation for uplink and downlink can improve system efficiency and we study this issue in this paper with the concept of the user-level utility function. In most cases, a user has a two-way communication that consists of two sessions: uplink and downlink sessions and its overall satisfaction to its communication depends on its satisfaction to each of its sessions. To model user's overall satisfaction to its communication, we define a user-level utility function, which is defined as a function of its session-level utility functions. We then formulate and solve the optimization problem with user-level utility functions for cell-level resource scheduling that jointly considers uplink and downlink resource allocation. Simulation results show that our cell-level scheduling in which resource allocation in both uplink and downlink is done jointly outperforms link-level scheduling, in which resource allocation in each of uplink and downlink is done separately in most cases, especially when the asymmetry between uplink and downlink is large.

This publication has 13 references indexed in Scilit: