Dynamic versus static respiratory mechanics in acute lung injury and acute respiratory distress syndrome

Abstract
It is not clear whether the mechanical properties of the respiratory system assessed under the dynamic condition of mechanical ventilation are equivalent to those assessed under static conditions. We hypothesized that the analyses of dynamic and static respiratory mechanics provide different information in acute respiratory failure. Prospective multiple-center study. Intensive care units of eight German university hospitals. A total of 28 patients with acute lung injury and acute respiratory distress syndrome. None. Dynamic respiratory mechanics were determined during ongoing mechanical ventilation with an incremental positive end-expiratory pressure (PEEP) protocol with PEEP steps of 2 cm H2O every ten breaths. Static respiratory mechanics were determined using a low-flow inflation. The dynamic compliance was lower than the static compliance. The difference between dynamic and static compliance was dependent on alveolar pressure. At an alveolar pressure of 25 cm H2O, dynamic compliance was 29.8 (17.1) mL/cm H2O and static compliance was 59.6 (39.8) mL/cm H2O (median [interquartile range], p Conclusions: Exploiting dynamic respiratory mechanics during incremental PEEP, both compliance and recruitment can be assessed simultaneously. Based on these findings, application of dynamic respiratory mechanics as a diagnostic tool in ventilated patients should be more appropriate than using static pressure–volume curves.