Different laws govern motor activity in sleep than in wakefulness

Abstract
A wide range of elementary and complex motor activities are known to occur during sleep, but very little is known about the basic physiologic condition of the skeletal muscle during sleep. The present study provides evidence that a minute electric random activity constitutes the basic physiologic condition of the skeletal muscles during sleep. During the NonREM stages of each sleep cycle a regression of the continuous random minute activity occurs, followed by a sudden increase of the isolated motor unit action potentials during REM sleep. Particular structural features of the anterior tibial (AT) muscle make it the most active skeletal muscle during sleep. During wakefulness, at rest, the random muscle activity disappears.