Ezh2 Expression in Astrocytes Induces Their Dedifferentiation Toward Neural Stem Cells

Abstract
Recently, we have demonstrated the expression of the polycomb group protein Ezh2 in embryonic and adult neural stem cells. Although Ezh2 remained highly expressed when neural stem cells differentiate into oligodendrocyte precursor cells, it is downregulated during the differentiation into neurons or astrocytes. This is in accordance with the differentiation repressive role Ezh2 is thought to play in the maintenance and self-renewal of stem cells. To establish the importance of downregulation of Ezh2 for becoming astrocytes, we have studied the effect of forced Ezh2 expression in postnatal mouse astrocytes. Upon forced expression of this polycomb group protein, cultured astrocytes retracted their cell extensions and became proliferating round/bipolar cells that occasionally formed small neurosphere-like clusters. Analysis of the expression profile of these Ezh2-expressing astrocytes reveal downregulation of typical astrocytic genes, like GFAP and S100, and upregulation of genes that are generally expressed in neural stem cells, like nestin, Sox2, musashi, and CD133. However, these neural stem cell-like cells lack a differentiation potential, indicating that overexpression of Ezh2 alone is insufficient for a complete dedifferentiation.