Abstract
We present in this paper a short-term scheduling of battery in security-constrained unit commitment (SCUC). For economical operation and control purposes, electric power users with photovoltaic (PV)/battery systems are interested in the availability and the dispatch of PV/battery power on an hourly basis, which is a cumbersome task due to the complicated operating patterns of PV/battery. The details of battery model in the PV/battery system are presented in this paper. The paper applies a Lagrangian relaxation-based optimization algorithm to determine the hourly charge/discharge commitment of battery in a utility grid. The paper also applies a network flow programming algorithm for the dispatch of committed battery units. The paper analyzes the impact of grid-connected PV/battery system on locational pricing, peak load shaving, and transmission congestion management. An eight-bus test system is used to study the operational pattern of aggregated PV/battery and demonstrate the advantages of utilizing PV/battery systems in the electric utility operation.