Nuclear microprobe studies of the electronic transport properties of cadmium zinc telluride (CZT) radiation detectors

Abstract
Ion Beam Induced Charge Collection (IBICC) is a proven albeit relatively new method to measure the electronic transport properties of room temperature radiation detectors. Using an ion microbeam, the charge collection efficiency of CZT detectors can be mapped with submicron resolution and maps of the electron mobility and lifetime can be calculated. The nuclear microprobe can be used not only for characterizing detectors but also with the use of Time Resolved IBICC (TRIBICC) and lateral IBICC/TRIBICC we can deduce information about the electron and hole mobility and lifetime profiles, and about the variation of electric field along the detectors' axes. The Sandia Nuclear Microprobe has been and is being used routinely to characterize CZT detectors and measure their electronic transport properties. In this paper we will present the results of these measurements for different detectors. Furthermore the damage effects caused by the probing beam will be discussed and a simple model will be presented to explain the characteristic charge collection efficiency pattern observed after high dose irradiation.