Verification of the James Webb Space Telescope coarse phase sensor using the Keck Telescope

Abstract
The James Webb Space Telescope (JWST) Coarse Phase Sensor utilizes Dispersed Hartmann Sensing (DHS)1 to measure the inter-segment piston errors of the primary mirror. The DHS technique was tested on the Keck Telescope. Two DHS optical components were built to mate with the Keck optical and mechanical interfaces. DHS images were acquired using 20 different primary mirror configurations. The mirror configurations consisted of random segment pistons applied to 18 of the 36 segments. The inter-segment piston errors ranged from phased (approximately 0 μm) to as large as ±25 μm. Two broadband exposures were taken for each primary mirror configuration: one for the DHS component situated at 0°, and one for the DHS component situated at 60°. Finally, a "closed-loop" DHS sensing and control experiment was performed. Sensing algorithms developed by both Adaptive Optics Associates (AOA) and the Jet Propulsion Laboratory (JPL)2 were applied to the collected DHS images. The inter-segment piston errors determined by the AOA and JPL algorithms were compared to the actual piston steps. The data clearly demonstrates that the DHS works quite well as an estimator of segment-to-segment piston errors using stellar sources.