Impact of artificial "gummy" fingers on fingerprint systems

Abstract
Potential threats caused by something like real fingers, which are called fake or artificial fingers, should be crucial for authentication based on fingerprint systems. Security evaluation against attacks using such artificial fingers has been rarely disclosed. Only in patent literature, measures, such as live and well detection, against fake fingers have been proposed. However, the providers of fingerprint systems usually do not mention whether or not these measures are actually implemented in emerging fingerprint systems for PCs or smart cards or portable terminals, which are expected to enhance the grade of personal authentication necessary for digital transactions. As researchers who are pursuing secure systems, we would like to discuss attacks using artificial fingers and conduct experimental research to clarify the reality. This paper reports that gummy fingers, namely artificial fingers that are easily made of cheap and readily available gelatin, were accepted by extremely high rates by 11 particular fingerprint devices with optical or capacitive sensors. We have used the molds, which we made by pressing our live fingers against them or by processing fingerprint images from prints on glass surfaces, etc. We describe how to make the molds, and then show that the gummy fingers, which are made with these molds, can fool the fingerprint devices.