Flux vortices and transport currents in type II superconductors

Abstract
This article is concerned with the mechanisms by which type II super-conductors can carry currents. The equilibrium properties of the vortex lattice are described and the generalized driving force in gradients of temperature and field is derived using irreversible thermodynamics. This leads to expressions for thermal cross effects which can include pinning forces. The field distributions which occur in a range of situations are derived and a number of useful solutions of the critical state given. In particular, the distribution in a longitudinal field is obtained, and the conditions under which force-free configurations can break down by the cutting of vortices discussed. The effects of lattice rigidity on the summation of pinning forces is considered and it is shown that a summation based on statistical arguments uses the same approximations and leads to the same results as a dissipation argument. Theoretical expressions are derived for the vortex pinning interaction to a number of different metallurgical defects. The theoretical models are compared critically with experimental measurements of pinning forces and other related phenomena, such as flux creep, low amplitude vortex oscillations and vortex lattice defect effects. Finally, the implications for technological materials are assessed.